Cervical Kinematics After Fusion and Bryan Disc Arthroplasty

Rick C. Sasso, MD and Natalie M. Best, BS

Introduction: Disc arthroplasty has been shown to provide short-term clinical results that are comparable with those attained with traditional anterior cervical discectomy and fusion. One proposed benefit of arthroplasty is the ability to prevent or delay adjacent level operations by retaining motion at the target level and eliminating abnormal adjacent activity. This paper compares motion parameters for single-level anterior cervical discectomy and fusion and disc replacement patients at the index level and adjacent segments.

Methods: Radiographic data from patients enrolled in a prospective, randomized clinical trial were selected for kinematic assessment of cervical motion. All patients received either a single-level fusion with allograft and anterior cervical plate (Atlantis anterior cervical plate, n = 13) or a single-level artificial cervical disc (Bryan Cervical Disc prosthesis, n = 9) at either C5/C6 or C6/C7. Flexion, extension, and neutral lateral radiographs were obtained preoperatively, immediately postoperatively, and at regular intervals up to 24-month time points. Cervical vertebral bodies were tracked on the digital radiographs using quantitative motion analysis software (QMA, Medical Metrics) to calculate the functional spinal unit motion parameters including range of motion (ROM), translation, and center of rotation. If visible, the functional spinal unit parameters were obtained at the operative level, and also the level above and the level below.

Results: As expected, significantly (P < 0.006 at 3, 6, 12, and 24mo) more flexion/extension motion was retained in the disc replacement group than the plated group at the index level. The disc replacement group retained an average of 6.7 degrees at 24 months. In contrast, the average ROM in the fusion group was 2.0 degrees at the 3-month follow-up and gradually decreased to 0.6 degrees at 24 months. The flexion/extension ROM both above and below the operative level was not statistically different for the disc-replaced and fusion patients, however, mobility increased for both groups over time. The anterior/posterior translation that occurs with flexion/extension motion remained unchanged for the disc replacement group at the level above the target disc preoperatively and postoperatively. In contrast, the translation increased for the level above the fusion. At the 6-month follow-up, the increase in translation was significantly greater for patients that were fused (P < 0.02) than for patients that received a disc replacement. This change was not significant at 12 months.

Discussion: Previous studies have shown the Bryan disc to maintain mobility at the level of the prosthesis. The long-term clinical benefit of maintenance of motion is postulated to be the ability to delay or avoid adjacent level operations. This study reveals that there is no difference in flexion/extension ROM at the level above and below either a fusion or Bryan arthroplasty. There is, however, an increase in anterior/posterior translation at the cephalad adjacent level in patients with arthrodesis while the Bryan arthroplasty retains normal translation for the same amount of flexion/extension at the adjacent level.

Conclusions: The Bryan disc may delay adjacent level degeneration by preserving preoperative kinematics at adjacent levels.

Key Words: cervical spine, kinematics, arthroplasty, artificial disc, Bryan artificial disc replacement, fusion

(A J Spinal Disord Tech 2007;00:000-000)

Anterior cervical disectomy and fusion (ACDF) is a proven intervention for patients with radiculopathy and myelopathy.1 Because of limitations specific to this procedure, investigators have developed alternatives to fusion that attempt to address the kinematic and biomechanical issues inherent in fusing a cervical motion segment.

Adjacent segment degeneration requiring reoperation has been documented at a rate of 2.9% of patients per annum by Hilibrand et al.2 Other reports have helped to shed light on the recurrence of neurologic symptoms and degenerative changes adjacent to fused cervical levels.2-5 In patients undergoing cervical fusion, 25% will have new onset of symptoms within 10 years of that fusion.2 Segments adjacent to a fusion are subjected to an increased range of motion (ROM) and increased intradiscal pressures.6-9. Intervertebral disc replacement is designed to preserve motion, avoid the limitations of fusion, and allow patients to quickly return to routine activities. It avoids the morbidity of bone graft harvest, pseudarthrosis, complications of anterior cervical plating, and the side effects of cervical immobilization.
Artificial disc implantation was first accomplished by Fernstrom in 1966. In the late 1980s, Cummins et al. developed a metal-on-metal ball and socket cervical disc replacement comprised of 316L stainless steel. In May 2002, the Bryan cervical disc was the first cervical prosthesis to be implanted in the United States as part of a Food and Drug Administration (FDA) Investigation Device Exemption (IDE) study. The Bryan disc (Medtronic Sofamor Danek, Inc, Memphis, TN) is a one-piece, biarticulating, metal-on-polymer, unconstrained device with a fully variable instantaneous axis of rotation and is the prosthesis used in this study.

One of the primary goals of cervical disc replacement is to reproduce normal kinematics after implantation. This includes the anterior-posterior translation routinely exhibited during flexion and extension. Motion studies have been conducted on human cadavers in the laboratory but are limited by the mandatory artificial design of in vitro evaluation. The optimal method of assessing cervical kinematics is in a living human in vivo model. A recent study evaluated in vivo motion with the Bryan disc postoperatively as compared with preoperative movement. The most valid study design, however, examines a prospective, randomized cohort of arthroplasty versus a control fusion population. The current study provides these data. This study aims to evaluate the ability of the Bryan disc device to maintain motion at the implanted level and also assess the motion at adjacent segments and compare this juxtalevel movement of arthroplasty to conventional arthrodosis.

MATERIALS AND METHODS

Patient Population

The first 22 consecutive patients enrolled in the Bryan cervical disc arthroplasty FDA IDE trial at one site are the subjects of this study. This is a prospective, randomized assessment of arthroplasty versus ACDF for the treatment of one-level cervical radiculopathy or myelopathy resistant to nonoperative treatment. All 22 patients were operated by one surgeon from May 2002 to April 2003. They received either a single anterior cervical allograft/plate (Atlantis anterior cervical plate, n = 13) or an artificial cervical disc (Bryan Cervical Disc prosthesis, n = 9) at either C5/C6 or C6/C7. Twelve patients had their procedure at level C5/6 and 10 at C6/7. Thirteen patients (59.1%) were male. At the time of surgery, the patient population’s ages ranged from 32 to 53 years with an average age of 42.4 ± 5.4 years.

Evaluation of Kinematics

Radiographic data from consecutive patients enrolled in a prospective, randomized clinical trial were selected for kinematic assessment of cervical motion. Flexion, extension, and neutral lateral radiographs were obtained preoperatively, immediately postoperatively and subsequent regular intervals up to 24 months. Cervical vertebral bodies were tracked on the digital radiographs using quantitative motion analysis (QMA) software (Medical Metrics; Houston, TX) to calculate the functional spinal unit motion parameters including ROM, translation, and center of rotation. This feature-tracking software has been used in a number of other studies. If visible, the functional spinal unit parameters were obtained at the operative level, and also the level above and the level below. Translation was measured as displacement of the cephalad vertebral body along a line parallel to the cephalad endplate of the caudal vertebral body and measured as a percent of the length of that endplate.

RESULTS

Significantly \(P < 0.006 \) at 3, 6, 12, and 24 mo) more flexion/extension motion was retained in the disc replacement group compared with the plated group at the index level. The disc replacement group retained an average ROM of 6.7 degrees at 24 months. In contrast, the average ROM in the fusion group was 2.0 degrees at the 3-month follow-up and gradually decreased to 0.6 degrees at 24 months (Fig. 1).

![Range of Motion For Disc-Replaced and Plated Patients](image-url)
The flexion/extension ROM both above and below the operative level was not statistically different for the disc-replaced and fusion patients; however, mobility increased for both groups over time (Fig. 1). The mean anterior/posterior translation that occurs with flexion/extension activities remained unchanged for the disc replacement group (8.3% of endplate preoperatively, 8.4% at 6 mo, and 8.2% at 12 mo) for the level above the disc (Fig. 2). In contrast, the translation increased for the level above the fusion (8.5% of endplate preoperatively, 12.4% at 6 mo, and 11.0% at 12 mo). This increase was dramatic for some fusion patients, but was not uniformly noted (Fig. 3). At the 6-month follow-up, the increase in translation was significantly greater for patients that were fused ($P < 0.02$) than for patients that received a disc replacement. This change was not significant at 12 months, perhaps owing to variability in level of patient effort.

DISCUSSION

The long-term clinical benefit of maintaining motion is postulated to be the delay or avoidance of adjacent level degeneration. Disc replacement aims to preserve the normal kinematics in the spine. The Bryan disc is one of several arthroplasty systems currently being investigated for use in the cervical spine. While each of these devices has early outcome data, long-term studies assessing adjacent segment degeneration are still pending.

Wigfield et al reported favorable results on a 2-year pilot study of the Prestige I Disc designed to address the safety of the technique and to assess the stability of, and motion allowed by, the device. They tried to target patients most at risk for adjacent segment disease. Fifteen patients were enrolled in the study. Motion was successfully preserved as radiographically demonstrated within an appropriate physiologic range. Device stability was concluded as no devices dislocated.

In a separate prospective nonrandomized study, Wigfield et al compared the effects of the Prestige Disc and one-level anterior fusion on adjacent segment motion. No significant difference in adjacent segment motion was measured between the 2 groups preoperatively. Postoperatively, there was a significant increase in adjacent segment motion in the fusion group (mean 9 degree increase) compared with a slight reduction in adjacent level motion noted in the disc group. In the fusion group, adjacent segment motion increased 5% at 6 months and 15% at 1 year. Subgroup analysis showed that increased motion occurs predominantly in normal rather than degenerative adjacent discs.

In May 2002, the Bryan Cervical Disc was the first cervical prosthesis to be implanted in the United States. Early clinical studies have shown clinical success and preserved motion at the implanted site. Of particular interest is whether the kinematics are preserved at the operated segment and at adjacent segments. ROM with the Bryan disc has been studied and has shown no significant change in ROM at the operated level and at adjacent levels postoperatively. This study found similar results. However, the strength of this study is that it is a prospective, randomized comparison with the conventional ACDF. One of the major criticisms of ACDF is that it does not preserve the normal kinematics of the spine and therefore may result in degeneration at adjacent segments potentially requiring an additional fusion. This study did show preserved motion with the Bryan disc as compared with ACDF. Flexion/extension ROM was not determined to be significantly different between populations at adjacent segments. However, there was a significant difference in translation at the level above the fusion after the surgery. To accomplish similar flexion/extension ROM at the level above the fusion, increased translation was found in the fusion group. This increased translation at the adjacent level may place excessive loads on the annulus and the facet joints above a cervical fusion.

This study showed that the Bryan disc maintains mobility at the level of the prosthesis, comparable with the preoperative ranges. In addition, the study corrob-
rates the findings of others and demonstrates that an increase in anterior/posterior translation at the adjacent level occurs in patients with arthrodesis.2–9 It is therefore postulated that the Bryan disc decreases risk for degenerative translational motion. Further evaluation needs to be done once long-term results have been obtained.

CONCLUSIONS

Normal flexion/extension ROM continues out to 2 years after Bryan disc arthroplasty. The flexion/extension ROM at adjacent levels to the Bryan disc and a fusion are not different, but to allow this same motion above a fusion-increased translation is demonstrated.

REFERENCES

